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Problem 1 (Denoising). In the first chapter, we saw that signal models are central for solving
inverse problems. Here, we consider a denoising problem and show that for a n-dimensional
signal that lies in a k-dimensional subspace, we can remove an n−k

n fraction of additive Gaussian
noise.
Consider a signal x∗ ∈ Rn that lies in a k-dimensional subspace, and suppose we are given a
noisy measurement

y = x∗ + z,

where z is zero-mean Gaussian noise with co-variance matrix (σ2/n)I. Let U ∈ Rn×k be an
orthonormal basis of the signal subspace. We denoise the signal by projecting the measurement
onto the subspace, i.e., we consider the estimate x̂ = UU>y.

1. Show that

E
[
‖x̂− x∗‖22

]
= σ2

k

n
,

where expectation is over the random noise z.

Hint: Recall that if V ∈ Rn×n is a unitary matrix (i.e., a matrix with orthonormal
columns) and z has iid, zero-mean Gaussian entries, then Vz has the same distribution
as z.

2. Does the estimator x̂ = UU>y remove more noise as the subspace dimension shrinks?
And intuitively, do you think a better denoising algorithm exists?

3. Next, we study this denoising algorithm numerically (ideally with python in a jupyter
notebook or Google colab using the libary numpy; if you are not familiar with those, this
exercise is a good exercise to familiarize yourself).

Generate a random k-dimensional subspace in R1000, and generate 500 random points in
that subspace. Next, denoise each of those data points with the estimator above, and
plot the average of the mean-squared error ‖x̂− x∗‖22/‖x∗‖

2
2 along with corresponding

standard deviations as error bar for different values of k = 1, 100, 200, . . . , 1000.

We intentionally did not specify the method for generating a random subspace or for
sampling points within it; you are encouraged to make a reasonable choice.
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